
Electrochemistry for 
materials technology 

Chapter 4B
Electrode kinetics

Mass transport phenomena
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• Diffusion
• Diffusion + Migration
• Convection
• Transient Responses

Transport Phenomena
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electric 
double layer

charge 
transfer

multi-step 
mechanisms transport

B-V Model with Mass Transport
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transport

B-V Model with Mass Transport
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Diffusion : movement of a species under the influence of a 
gradient of chemical potential (i.e., a concentration gradient).

Migration : movement of a charged species under the 
influence of an electric field (a gradient of electrical potential).

Convection : stirring or hydrodynamic transport (may be 
characterized by stagnant regions, laminar flow, or 
turbulent flow).

Modes of Mass Transport



Ji(x) = - Di
∂Ci(x)  
∂x  

ziF  
RT  

DiCi
∂Φ(x)  

∂x  + Ciν(x)  -

Mass transfer to an electrode is governed by the Nernst-Planck 
equation written for one-dimensional mass transfer along the x-axis as:

Ji(x) : flux of species i at a distance x from the surface [mol s-1 cm-2]  

Di(x) : diffusion coefficient of species i [cm2/s]  
∂Ci(x)  
∂x  

: concentration gradient at distance x

∂Φ(x)  
∂x  

: potential gradient at distance x

zi : charge of species i (not to be confused with z, which is mol e- /mol reactant)
Ci : concentration of species i [mol cm-3]

ν(x): velocity with which a volume element in solution moves along the axis [cm s-1]

diffusion migration convection

Modes of Mass Transport

mol/m3

Volt / m
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A rigorous solution is not easy when all 3 forms of mass 
transfer are present; hence electrochemical systems are 
frequently designed so that one or more of the 
contributions to mass transfer are negligible.

Migration can be considered negligible by the addition 
of inert electrolyte (i.e. a supporting electrolyte) at a 
concentration much larger than that of the electroactive 
species.

Convection can be considered negligible by preventing 
stirring and vibrations in the (‘stagnant’) electrochemical cell.

For example, 

screens the electric field that is 
“felt” by the reactive species

Modes of Mass Transport
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Ji(x) = - Di
∂Ci(x)  
∂x  

ziF
RT

DiCi
∂Φ(x)  

∂x  -

Mass transfer to an electrode is governed by the Nernst-Planck 
equation written for one-dimensional mass transfer along the x-axis as:

diffusion migration

If the species i is charged, then the flux, Ji, is equivalent to a current density ji:

Mass Transport without convection

+ Ciν(x)  

-Ji =  
jd,iji

ziF  =  ziF  +  
jm,i

ziF

flux due to 
diffusion

flux due to 
migration

charge of species i

jd,i

ziF  
jm,i

ziF

= Di
∂Ci(x)  
∂x  

ziF
RT

DiCi
∂Φ(x)  

∂x  =
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Mass Transport without convection

F2

RT
zi2DiCi

∂Φ(x)  
∂x  

j =    ji =    (jd,i + jm,i) = F ΣΣ ∂Ci(x)  
∂x  Σ

i
zjDi +

ii
Σ
i

At any location in solution, the total current is made up of 
contributions from all the species i :

where the current for each species at that location is made up 
of a diffusional component and a migrational component
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The relative contributions of diffusion and migration to the flux of a species (and the 
flux of that species to the total current) differ for different locations in solution. 

• Far from the electrode, migration can play a dominant role.

• Near an electrode, an electroactive substance is usually transported by both 
processes.

Mass Transport without convection

Co
nc

en
tra

tio
n

Distance from Electrode

MigrationDiffusion
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10 Cl- à 5 Cl2 + 10 e-

10 e-

10 Cl-10 H+

10 e-

10 H+ + 10 e- à 5 H2

8 H+

2 Cl-

(Cathode) (Anode)+-

diffusiondiffusion

migration
migration

8 Cl-

8 H+
2 H+

2 Cl-

Cathode:
80% of H+ current is migration

Anode:
20% of Cl- current is migration

Mass Transport without convection
2 HCl ó H2 + Cl2
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In the bulk solution (away from the electrode), concentration 
gradients are generally small, and the total current is carried 
mainly by migration of all charged species.

Migration 

F2

RT
zi2DiCi

∂Φ(x)  
∂x  

ji = jd,i + jm,i = F ∂Ci(x)  
∂x  

zjDi +

small concentration 
gradient

ji =    
zi2F2DiCi

RT  
∂Φ(x)  

∂x  
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jm,i =
zi2F2

RT  
DiCi

∂Φ(x)  
∂x  

Mobility of a species i (ui) is the ability of a charged particle to 
move through a medium in response to an electric field.

ui =
|zi|FDi
RT  

jm,i = |zi|FuiCi
∂Φ(x)  

∂x  

By substituting for Di,

|zi|FuiCi∆E
L  

assuming linear change in 
potential (∆E) over distance L

∆E
L

∂Φ(x)  
∂x  ~

jm,i =

Migration 

unit: m2/V.s
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If multiple species i contribute to current, the total current is the 
sum of all the individual contributions.

j =     ji = Σ
i

|zi|uiCiL  
F∆E  Σ

i

Migration 

The transference number ti of species i is the fraction of the 
total migration current that a given ion i carries.

ti = j
ji |zi|uiCi= |zk|ukCkΣ

k

Ci = concentration of i
zi = charge of i
ui = mobility of i
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10 Cl- à 5 Cl2 + 10 e-

10 e-

10 Cl-10 H+

10 e-

10 H+ + 10 e- à 5 H2

8 H+

2 Cl-

(Cathode) (Anode)+-

diffusiondiffusion

migration
migration

8 Cl-

8 H+
2 H+

2 Cl-

Cathode:
80% of H+ current is migration**

Anode:
20% of Cl- current is migration**

Mixed Migration + Diffusion

Step 1:
Charge balance

Step 2:
Mass balance

tH+ ~0.8
tCl- ~0.2

add enough to reach 
total H+ or Cl- needed 
at each electrode)

Step 1:*

Step 2:

*Gives information on 
relative contributions to 
jmigration

**gives information on jmigration vs. jdiffusion
independent of tH+, tCl- (happens to also be 0.8, 0.2 in this example)

2 HCl ó H2 + Cl2
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j = jd + |jm| j = jd - |jm| j = jd

Positively charged 
reactant

Negatively charged 
reactant

Uncharged reactant

ca
th

od
e

ca
th

od
e

ca
th

od
e

Migrational component is 
same direction as jd for
• Cations reacting at 

cathode
• Anions reacting at 

anode

Migrational component is 
different direction from jd for
• Cations oxidized at 

anodes
• Anions reduced at 

cathodes

Mixed Migration + Diffusion 
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Diffusion current (jd)
Oxidized species diffuses to cathode (increases cathodic
current by making it more negative) 
Reduced species diffuses to anode (increases anodic
current by making it more positive)

Migration current (jm)
Cation migrates to cathode (increases cathodic current 
by making it more negative) 
Anion migrates to anode (increases migration anodic
current by making it more positive)

Anion diffuses to cathode (decreases cathodic current by 
making it less negative) 
Cation diffuses to anode (decreases anodic current by 
making it less positive)

Sign Convention for Diffusion and 
Migration Currents (see previous slide)
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Consider the reduction reaction
O + ze- R

when the reduction of O begins, [O]S << [O]*

Ji(x) = - Di
∂Ci(x)  
∂x  

ziF  
RT  

DiCi
∂Φ(x)  

∂x  + Ciν(x)  -

diffusion

assume stirring is 
ineffective at the 
electrode surface

assume there is an 
excess of supporting 

electrolyte

νmt α  DO
∂CO(x)  
∂x  

Rate of mass-transfer (νmt) is proportional to the 
concentration gradient

DO
[O]* - [O]S

δ  x=0 
(at the surface)

assuming linear variation

Diffusion-limited case



19

C
on

ce
nt

ra
tio

n,
 C
O

actual concentration 
profile

Diffusion layer 
linear approximation

[O*]

[O]s

[O]s
δ

Diffusion layer 
thickness

0 Distance from Electrode, x

Diffusion-limited case
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j = km,O([O]s - [O*])∙ z ∙ F

For limiting case where [R*]=0,

Recall in our derivation of the mass-transfer limited Butler-
Volmer expression:

O + ze- R
Consider the reaction

O is consumed, [O]S < [O*]:
j = km,R([R*] - [R]S)∙ z ∙ F

R is produced, [R]S > [R*]:

(net cathodic reaction)

For limiting case where [O]S=0,

jlim,c = - km,O[O*]∙ z ∙ F j = - km,R[R]S∙ z ∙ F

[O]S =
km,O·z·F
j – jlim,c

[R]S =
- j

km,R·z·F

Linear diffusion approximation: 
1) R initially absent



If the kinetics are fast, the concentrations of O and R at the 
electrode surface can be assumed to be at equilibrium: 

Nernst Equation 

Ecell = E°cell,T - ln  RT
zF

[R]S
[O]S

= E°cell,T - ln  RT
zF

-j
km,R·z·F

km,O·z·F
j - jlim,c

·

Ecell = E°cell,T - ln  RT
zF -jkm,R

km,O j – jlim,c
+        ln RT

zF

when j = jlim,c/2

E1/2 = E°cell,T - ln  RT
zF km,R

km,O

substitution

when km,O ~ km,R, 
E1/2 ~ E°cell,T

0

Linear diffusion approximation: 
1) R initially absent



j

E1/2 = E°cell,T - ln  RT
zF km,R

km,O

jlim

Linear diffusion approximation: 
1) R initially absent



If the kinetics are fast, the concentrations of O and R at the 
electrode surface can be assumed to be at equilibrium: 

Nernst Equation 

Ecell = E°cell,T - ln  RT
zF

[R]S
[O]S

= E°cell,T - ln  RT
zF

-j
km,R·z·F

km,O·z·F
j - jlim,c

·

Ecell = E°cell,T - lnRT
zF -jkm,R

km,O j – jlim,c
+ lnRT

zF

when j = jlim,c/2

E1/2 = E°cell,T - ln  RT
zF km,R

km,O

substitution

Linear diffusion approximation: 
1) R initially absent

Ecell = E1/2 -j
j – jlim,c

+        ln RT
zF

E1/2 is a characteristic of the system
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For limiting case where [R]S=0,

Recall in our derivation of the mass-transfer limited Butler-
Volmer expression:

O + ze- R
Consider the reaction

O concentration gradient:
j = km,R([R*]-[R]s)∙ z ∙ F

For limiting case where [O]S=0,

jlim,c = - km,O[O*]∙ z ∙ F jlim,a = km,R[R*]∙ z ∙ F

[R]S =
km,R·z·F
jlim,a - j

R concentration gradient:

Linear diffusion approximation: 
2) O and R initially present

j = km,O([O]s - [O*])∙ z ∙ F

[O]S =
km,O·z·F
j – jlim,c
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If the kinetics are fast, the concentrations of O and R at the 
electrode surface can be assumed to be at equilibrium: 

Nernst Equation 

Ecell = E°cell,T - ln  RT
zF

[R]S
[O]S

= E°cell,T - ln  RT
zF

·

Ecell = E°cell,T - ln  RT
zF km,R

km,O j – jlim,c
+        ln RT

zF

substitution

km,R·z·F
jlim,a- j km,O·z·F

j – jlim,c

Linear diffusion approximation: 
2) O and R initially present

jlim,a – j
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When j = 0, E = Eeq and the system is at equilibrium. When current flows,
the potential deviates from Eeq, and the extent of this deviation is the
concentration overpotential.

j

jlim,a

jlim,c

E = VOC ≈ Eeq

Linear diffusion approximation: 
2) O and R initially present
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Suppose R is a metal and can thus be considered to be at
essentially unit activity (aR=1) as the electrode reaction takes
place on bulk R.

Nernst Equation 

Ecell = E°cell,T +       ln  RT
zF

[O]S

Linear diffusion approximation: 
3) R is insoluble
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j = km,O([O]S - [O*])∙ z ∙ F

Recall in our derivation of the mass-transfer limited Butler-
Volmer expression:

O + ze- R
Consider the reaction

O is consumed, [O]S < [O*]:

For limiting case where [O]S=0,

jlim,c = - km,O[O*]∙ z ∙ F

[O]S =
km,O·z·F
j – jlim,c

[O]S
[O*] =1 - j

jlim,c

(cf. Chapter 4A, slide 17)

Linear diffusion approximation: 
3) R is insoluble

e.g. Cu2+ + 2 e-  à Cu
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Suppose R is a metal and can thus be considered to be at
essentially unit activity (aR=1) as the electrode reaction takes
place on bulk R.

Nernst Equation 

Ecell = E°cell,T +       ln  RT
zF

[O]S = E°cell,T +       ln  
substitution

RT
zF

[O*] 

j
jlim,c

Ecell = E°cell,T +       ln  RT
zF jlim,c

jlim,c – j
+        ln RT

zF

[O*] 1 -

Linear diffusion approximation: 
3) R is insoluble
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[O*] Ecell = E°cell,T +       ln  RT
zF jlim,c

jlim,c – j
+        ln RT

zF

j
complete 
concentration 
polarization

|jlim,c|zF
RT

Rmt,c = 

Recall Chapter 4A
(slide 28+)

ηconc

ηconc à ∞

Linear diffusion approximation: 
3) R is insoluble

mass transfer resistance
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Ecell = E°cell,T - ln  RT
zF jlim,a – jkm,R

km,O j – jlim,c
+        ln RT

zF

Ecell = E°cell,T - ln  RT
zF -jkm,R

km,O j – jlim,c
+        ln RT

zF

O and R initially present:

R initially absent: (jlim,a = 0)

Ecell = E°cell,T - ln  RT
zF km,R

km,O j
+        ln RT

zF

O initially absent: (jlim,c = 0)

jlim,a – j
Recall: kmO, km,R α δ(t)-1, so they are actually functions of time 

Summary: linear diffusion approximation



Flux NA of species A normal to the 
electrode surface

32

NA =   - DA    (mol/m2 s)
CA,sCA,b  -

d

DA  : coefficient of diffusion  (m2/s)

d : thickness of Nernst diffusion layer  (m) 

CA,s

CA,b

distance

d

ilim = +/- z F DA cA,b / d
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Now consider the diffusion layer thickness to be a time-
dependent response:

rate of mass 
transfer (νmt)

•

D([O]* - [O]S)  

δ(t)

[O]S

[O*]
Thickness of 
linearized diffusion 
layer grows with time 
after a potential E is 
first applied.

rate of reaction 
(νrxn)

j
zF= = =

Linear diffusion approximation: 
transient response

mol/m2.s
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The current flow causes a depletion of O, where the amount
of O reacted is given by

Moles of O reacted in 
diffusion layer [O]* - [O]S 2

[O]S

[O*]

A·δ(t)
=

Volume of 
diffusion layer

total [O] 
consumed

dti
zF∫=

0

t

Thickness of 
linearized diffusion 
layer grows with time 
after a potential E is 
first applied.

Linear diffusion approximation: 
transient response

( )
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The current flow causes a depletion of O, where the amount
of O reacted is given by

Moles of O reacted in 
diffusion layer = dti

zF∫=

[O]* - [O]S
2
A  dδ(t)

dt
i

zF
= =

j = km,O([O*]-[O]S)∙ z ∙ F

DO
δ(t)

A·([O*]-[O]S)
Recall: Chapter 4A
(linearization of Fick’s Law)

dδ(t)
dt

=
2DO

δ(t)

Since δ(t) = 0 at t =0,

δ(t) = 2(DOt)0.5
j

zF
DO

0.5

2t0.5
([O*]-[O]S)=

0

t

[O]* - [O]S 2

Linear diffusion approximation: 
transient response

A·δ(t)( )

( )
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j

• δ(t) increases with t0.5

• j decays with t-0.5

current decays to 0

current approaches 
steady-state value 
characterized by δ(t) = δO

Linear diffusion approximation: 
transient response

Examples: layer deposition, scale build-up,…



37

Semi-empirical approach used thus far

• Nernstian behavior 
Assumptions Simple 

math
i-E Curve

Can we justify these 
assumptions?

Diffusion-limited case: 
rigorous approach

• j = km,O([O]S-[O*])∙ z ∙ F
• j = km,R([R*]-[R]S)∙ z ∙ F
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Ji(x) = - Di
∂Ci(x)  
∂x  

Fick’s First Law

=  Di
∂2Ci(x,t)  

∂x2

Fick’s Second Law

∂Ci(x,t)  
∂t  

More generally,

Ji = - Di Ci

Fick’s First Law

= Di

Fick’s Second Law

∂Ci
∂t  

∆ 2Ci

∆

Diffusion-limited case



O + ze- R

Consider the first case where we apply a step potential to go
from a non-faradaic process to a mass-transport limited process

=  DO

∂2CO(x,t)  

∂x2

∂CO(x,t)  

∂t  

CO(x,0) = [O*]

lim CO(x,t) = [O*]
xà∞

CO(0,t) = 0  (t > 0)

1. Initial conditions (t = 0)

2.  Conditions at far distances (x >> 0)

3.  Conditions at the surface (x = 0)

Linear diffusion-limited case



Semi-empirical approach used thus far

• Nernstian behavior 
• Diffusion equations
• Boundary conditions

Assumptions More 
complex 

math
j =           ([O*]-[O]S)∙ z ∙ FDO

π·t

0.5

• Nernstian behavior
• Linear profile 

Assumptions Simple 
math

• j = km,O([O]S-[O*])∙ z ∙ F
• j = km,R([R*]-[R]S)∙ z ∙ F

j
zF

DO
0.5

2t0.5
([O*]-[O]S)=

Diffusion-limited case: 
rigorous approach
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Current density for non-steady state 
concentration profiles

Case of the cathodic reduction of a species at the electrode:

d c
d x x=0

ic = - n F 

d2c
d x2

d c
d t = D 

mass transport controlled kinetics, Fick’s 1st Law
(current is proportional to the concentration gradient)

concentration evolution with time, Fick’s 2nd Law
(conc. change with t, at position x, changes with the current gradient at 
that position)

Solving the above equation system yields the Cottrell equation:
ic = - n F (cb – cs) (D/(π t))0.5

in practice : plot i vs 1/√t; (see chapter 5 ‘Experimental techniques’)
when the result is linear, the reaction is diffusion-controlled, 
and from the slope a diffusion coefficient D can be extracted

x
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C
on

ce
nt

ra
tio

n,
 [O

]

actual concentration 
profile

Diffusion layer linear 
approximation

[O*]

[O]s

[O]s
δ

Diffusion layer 
thickness

0 Distance from Electrode, x

linear 
approximation

diffusion 
model

Diffusion-Limited Case
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CO(x,t)

[O*]

Potential Step methods under 
diffusion control: planar diffusion
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Diffusion : Movement of a species under the influence of a 
gradient of chemical potential (i.e., a concentration 
gradient).

Migration : Movement of a charged body under the 
influence of an electric field (a gradient of electrical 
potential).

Convection : Stirring or hydrodynamic transport (may be 
characterized by stagnant regions, laminar flow, or 
turbulent flow). 

Rotating disc electrode (RDE)

Modes of Mass Transfer
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j

• δ(t) increases with t0.5

• j decays with t-0.5

current decays to 0

current approaches 
steady-state value 
characterized by δ(t) = δO

Linear diffusion approximation: 
transient response



Cylindrical coordinates

ω = angular velocity (s-1)
= 2πN rotation frequency

[revolutions/s]

ω

Rotating Disk Electrode (RDE)
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Solving for RDE velocity profile



jK

jjlim

jlim
current in the absence of mass-
transfer effects (e.g. under kinetic 
limitation) if mass-transfer were 
efficient enough to keep the 
concentration at the surface equal 
to the bulk

jlim,c = 0.62 zFDO
2/3ω1/2ν-1/6[O*] Levich Equation

Mass-transfer limitation
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Rotating Disk Electrode (RDE)

is followed in case of mass transfer limitation

is followed in case of non-mass transfer limited
Koutecky – Levich 

=> see Chapter 5 ‘Experimental techniques’

(n = viscosity)


